Romanian Masters In Mathematics

Bucharest

11 Let $A B C$ be an equilateral triangle and P in its interior. The distances from P to the triangle's sides are denoted by a^{2}, b^{2}, c^{2} respectively, where $a, b, c>0$. Find the locus of the points P for which a, b, c can be the sides of a non-degenerate triangle.

2 Prove that every bijective function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ can be written in the way $f=u+v$ where $u, v: \mathbb{Z} \rightarrow \mathbb{Z}$ are bijective functions.

3 Let $a>1$ be a positive integer. Prove that every non-zero positive integer N has a multiple in the sequence $\left(a_{n}\right)_{n \geq 1}, a_{n}=\left\lfloor\frac{a^{n}}{n}\right\rfloor$.

44 Consider a square of sidelength n and $(n+1)^{2}$ interior points. Prove that we can choose 3 of these points so that they determine a triangle (eventually degenerated) of area at most $\frac{1}{2}$.

