Saturday, February 28, 2009, Bucharest

Language: English

Problem 1. For positive integers $a_1, ..., a_k$, let $n = \sum_{i=1}^k a_i$, and let $\binom{n}{a_1, ..., a_k}$ be the multinomial coefficient $\frac{n!}{\prod_{i=1}^k (a_i!)}$. Let $d = \gcd(a_1, ..., a_k)$ denote the greatest common divisor of $a_1, ..., a_k$. Prove that $\frac{d}{n} \binom{n}{a_1, ..., a_k}$ is an integer.

Problem 2. A set *S* of points in space satisfies the property that all pairwise distances between points in *S* are distinct. Given that all points in *S* have integer coordinates (*x*, *y*, *z*), where $1 \le x, y, z \le n$, show that the number of points in *S* is less than min $((n+2)\sqrt{n/3}, n\sqrt{6})$.

Problem 3. Given four points A_1 , A_2 , A_3 , A_4 in the plane, no three collinear, such that

$$A_1A_2 \cdot A_3A_4 = A_1A_3 \cdot A_2A_4 = A_1A_4 \cdot A_2A_3,$$

denote by O_i the circumcenter of $\Delta A_j A_k A_\ell$, with $\{i, j, k, \ell\} = \{1, 2, 3, 4\}$.

Assuming $A_i \neq O_i$ for all indices *i*, prove that the four lines A_iO_i are concurrent or parallel.

Problem 4. For a finite set *X* of positive integers, let

$$\Sigma(X) = \sum_{x \in X} \arctan \frac{1}{x}.$$

Given a finite set *S* of positive integers for which $\Sigma(S) < \frac{\pi}{2}$, show that there exists at least one finite set *T* of positive integers for which

$$S \subset T$$
 and $\Sigma(T) = \frac{\pi}{2}$.

Every problem is worth 7 points. Time allowed is 5 hours.