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PROBLEM 1.  “STRETCHABLE” CAPACITOR 

 
A plane-parallel capacitor has circular sides of area S initially separated by distance d. 
Each plate is of mass m and it can move horizontally without friction along a fixed, 
long, straight, perfectly conducting rod that passes through a small hole in the plate’s 
center. The rods meet at the center of the capacitor but are electrically insulated from 
each other by a piece of rubber of negligible thickness. The rods are very thin and 
their effect on the electric and magnetic fields inside (and outside) the capacitor is to 
be neglected. Each plate makes at all times a perfect electrical contact with the rod on 
which it sits. The plates are initially kept at rest and each one is charged with a 
positive electric charge Q. The capacitor is in vacuum; the vacuum permittivity ε0 and 
the speed of light c are known. A constant voltage U is applied between the rods and 
the plates are let loose. 
a. Express the magnitude of Q in terms of S, d, ε0, and U so that the plates still remain 
at rest. Is this equilibrium stable or unstable? Please explain. 
For the rest of the problem assume that the electric charge Q has the value determined 
above. At time t = 0 the plates are given a very small kick which takes them out of the 
equilibrium position, so that they start moving apart from each other. Denote the 
distance between the plates at some moment t by x(t). 
b. Write down the differential equation describing x(t). 
c. Transform the equation so that it describes the dependency of v(x) (the velocity 
with which the distance between the plates varies). Solve the equation in terms of m, 
S, d, ε0, U, and x. 
d. Determine the rate with which the magnitude of the electric field E inside the 
capacitor varies in time. 
Consider the points inside the capacitor situated at distance r from the axis passing 
through the centers of the plates, where r is much smaller than the radius of the plates. 
e. Express the magnitude of the magnetic field B at these points in terms of m, S, d, ε0, 
c, U, x, and r. How are the magnetic field lines oriented? 
A small thin dielectric ring having area A, moment of inertia I, and positive electric 
charge q is placed inside the capacitor, at distance r from the axis passing through the 
centers of the plates. The plane of the ring includes the axis passing through the 
centers of the plates. Neglect at all times the inductances of all the objects in the 
problem. 
At time t = 0 the ring is permitted to only rotate freely around its own axis. 
f. What will be the maximum angular velocity of the ring, and what will be the 
distance between the plates at that moment? 
g. At the exact moment when the ring gets its maximal angular velocity, the voltage is 
disconnected. What will be the ring’s angular velocity right after that? 
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PROBLEM 2.  FRACTAL PHYSICS 

 
1. You are most probably familiar with the Rubik 
cube. It is a toy in the shape of a cube, having 
each side of a different color, made up of 9 
smaller cubes, as in the picture alongside. So you 
have a total of 27 smaller cubes (the central one 
cannot be seen from outside, unless you break 
down the set). 
 
Now remove this inner cube and the 6 cubes 
lying at the center of each side. You are left with 
20 cubes, and now you can see along the axes 
passing through the centers of opposite sides. 
Now apply the same procedure to each of these 
20 cubes, and repeat it to infinity. In the end you 
get a fractal object looking like in the picture 
alongside, called the “Menger sponge” (or alter-
nately, the “Sierpinski cube”). 
 
Calculate the moment of inertia of such an object 
having the resulting mass m and the length of the 
edge l, with respect to an axis passing trough the 
centers of two opposite sides. 
 
 
2. Consider a one-dimensional diffraction grating in the shape of the so called “Cantor 
set”. In order to obtain such a grating, start by blocking the 
central third of a narrow aperture of width l. Then you must 
block the central thirds of the two remaining apertures, and 
so on. The end result looks like in the picture alongside. 
Let N be the maximum number of steps for which it is 
physically possible to apply this procedure, and I0 the 
intensity of the monochromatic light falling normally onto 
each aperture of the grating. Consider the light diffracted at 
an angle α, and assume always the simplifying hypothesis 
that the apertures are point-like. 
a. Write down the path difference corresponding to the two 
uppermost apertures, in terms of l, N and α. Calculate the 
intensity of the light diffracted by these two apertures as a 
function of α, ignoring all other apertures. 
b. Let us denote 2πlsinα/3Nλ by x. Plot the graph of I(x). 
c. Similarly, calculate I(α) for the four uppermost apertures 
and plot I(x). 
[Hint: For the sake of simplicity, assume that the nontrivial 
solutions of the equation tan(x) + 3 tan(3x) = 0 are x = nπ/6, 

n ∈ ℕ.] 

d. Express I(α) for the entire diffraction grating in terms of 
I0, l, N, and α, and try to infer the general diffraction pattern. 
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PROBLEM 3.  AN INTRODUCTION TO QUANTUM MECHANICS 

 
In what follows the kinetic energy of a particle is supposed to be much smaller than 
its rest energy, so it can be written in a Newtonian manner: 
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1. The equation of an undamped plane wave propagating in the positive direction of 
the x-axis is 
 

( , ) sin( ) ,x t a t kxξ ω= −  

 
where the argument of the sine function is called the “phase” of the wave, and k is 
called the “wave number” and is equal to 2π/λ. 
The phase velocity c is defined as the velocity with which a certain value of the wave 
phase propagates in space, so strictly speaking it just represents the propagation 
velocity of the wave. 
 
a. Express the phase velocity in terms of ω and k. 
 
Now consider two undamped plane waves propagating in the positive direction of the 
x-axis with almost equal ω-s and k-s: 
 

1 1 1 1 2 2 2 2 1 2 1 2( , ) sin( ) , ( , ) sin( ) ; , .x t a t k x x t a t k x k kξ ω ξ ω ω ω= − = − ≈ ≈  

 
b. Taking into account the interference of these two waves at some moment of time t, 
determine the points on the x-axis corresponding to maxima of the amplitude of the 
resulting wave at that precise moment. 
 
Let us define the group velocity vg as the velocity with which these points move along 
the x-axis. 
 
c. Express the group velocity in terms of ∆ω = ω2 – ω1 and ∆k = k2 – k1. 
 
Now instead of just two waves, consider a “packet” of waves having ω-s in a very 
narrow range ∆ω around ω0 and k-s in a very narrow range ∆k around k0. In this case 
one can think of ω as varying linearly with k, ∆ω/∆k representing the gradient (slope). 
Also, one can speak of an almost constant amplitude density, a/∆k. 
 
d. Write down the expression for the resulting wave in terms of a, ω0, ∆ω, k0, ∆k, x, 
and t. For some moment of time t, estimate the ratio of the greatest two magnitudes of 
the amplitude. Also show that the expression already found for vg still holds. 
 
[Hint: The equation tan α = α has, besides the obvious solution α = 0, the approximate 
solutions α = ± (2n+1) π/2, n = 1, 2,…] 
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2. One knows that the energy and momentum of a photon can be expressed in terms of 
the frequency and/or the wavelength of the corresponding electromagnetic radiation: 
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Louis DeBroglie put forth the hypothesis of extending the above formulas for all 
microscopic particles. Thus for any particle moving along the x-axis one can associate 
the equation of an undamped plane wave: 
 

( , ) sin .
E p

x t a t xξ  = − 
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Moreover, let us now assume that each particle is equivalent to a packet of waves 
centered on E/ћ and p/ћ. 
 
e. Show that in this context vg is simply the particle’s velocity. 
 
The above results lead us to the idea that the main maximum of the packet could be 
interpreted as an indication regarding the position of the particle along the x-axis at 
some moment of time t. 
 
f. Calculate the distance ∆x between the center of the packet and the nearest 
minimum, and show that ∆x∆p = h. 
 
This means that if you want to have greater and greater accuracy for the position of 
the center of the packet, then you must allow for wider and wider ranges of the 
momentum of the particle. Alternately, as you try to reduce the wave packet to just 
one single wave corresponding to an exact value of the momentum, you loose track of 
the position of the particle along the axis. 
At first sight, the distance calculated above could be interpreted as an indication 
regarding the relative size of the particle. But since in theory the width of the packet is 
arbitrary, and there are also other smaller maxima of the resulting wave, it is far more 

interesting to view the resulting wave as a measure of the probability for finding the 

particle along the x-axis at some moment of time t. 
 
 
 
3. Starting from the real function of two real variables ξ(x,t) one can naturally define a 
complex function of the same variables so that its imaginary part is the original function: 
 

( , ) [cos( ) sin( )] .x t a t kx i t kxω ωΨ = − + −  

 
In what follows, we will use another notation for complex quantities, namely: 
 

( )( , ) e .i t kxx t a ω −Ψ =  

 
In what follows we will adopt this complex function as the expression for a plane wave. 
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g. Write down in the two notations the equation for an undamped plane wave 
propagating in the negative direction of the x-axis. Find out the expressions of the sine 
and cosine functions in exponential form. 
h. Write down in exponential notation the equation for a standing wave obtained by 
interference of two undamped plane waves with equal amplitudes propagating in the 
two directions of the x-axis. 
 
Let us define de probability density of finding a particle in a certain point x at some 
moment t by |Ψ(x, t)|2. This means that 
 

( , ) *( , ) 1 for any ,x t x t dx tΨ Ψ =∫  

 
where the star (*) denotes the conjugate of a complex quantity. 
We want to study the quantum states of a free moving particle (i.e. an electron having 
the rest energy E0 = 0.5 MeV) in a one-dimensional region of length l. Consequently 
its potential energy is 0 for any x ∈ [– l/2 , + l/2] and infinite otherwise. You can 
imagine this region as a one-dimensional well with infinitely high walls in zero 
gravity, while assuming that the interactions of the particle with the walls are 
perfectly elastic. 
 
i. What is the lowest possible value for the kinetic energy of such a particle in 
classical mechanics? What is the probability density in this case? 
 
The quantum approach of the problem resides in assimilating the particle to different 
standing waves (modes of oscillation) Ψ having nodes at x = ± l/2, called “wave 
functions”, each mode of oscillation corresponding to a quantum state of the particle. 
 
j. Determine the values En for the kinetic energy of a particle corresponding to the n-th 
oscillation mode (n is called “quantum number”). Evaluate E1 for an electron for l = 1 Å. 
k. Write down the wave function Ψ1 corresponding to the “ground (fundamental) 
state” and the wave function Ψ2 corresponding to the first “excited state”, and express 
their amplitudes c1 and c2 in terms of l. Evaluate the probabilities for finding the 
particle in the central third of the region in each of these two states. 
 
Now just as the string of a musical instrument doesn’t settle down for just one 
oscillation mode but rather is subject to a superposition of the possible standing 
waves, so does the real state of the particle consists of a mixture of all the wave 
functions, with some coefficients αn representing the weights of each “pure” state: 
 

n
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=
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l. Consider αn = 0 for all n > 2, and find out the relation which must exist in this case 
between α1 and α2. 
 
In fact the above result holds for all n, and it shows that Ψn don’t interfere with one 
another. Rather they act as independent unit-vectors of an infinite dimensional space, 
Ψ(x,t) being basically a vector with coordinates {αn | n = 1, 2,…}. 



Romanian Master of Mathematics and Sciences 

2011 

Physics Section 
 

Page 6 of 6 

 
Finally let us revert to the assumption that there are only “pure” states and consider 
now the case of a particle moving freely inside a box with dimensions lx × ly × lz. 
Again the potential energy is zero inside the box and infinite outside, and the 
interactions with the walls are perfectly elastic, but this time the wave function 
depends on four real variables: x, y, z, and t. This means that this time we will need 
three quantum numbers, one for each axis: nx, ny, and nz. 
 
m. What is the lowest possible value for the kinetic energy of such a particle in 
classical mechanics? What is the probability density in this case? 
n. Write down the expressions for the kinetic energy of the particle in terms of E0, c, 
lx, ly, lz, nx, ny, nz, and ћ. 
 
It can easily be seen that there can be situations in which the particle has the same 
kinetic energy for different sets of quantum numbers. This fact is called “degeneracy”. 
A trivial condition which is sufficient to have degeneracy is that at least two sides of 
the box be equal. 
 
o. For lx = ly = lz = 1Å, evaluate the kinetic energy corresponding to the ground state 
of an electron. Is this state degenerate? 
p. Find an example of degeneracy in the case that the sides of the box are not equal.  
q. Write down the equation for Ψnx,ny,nz(x,y,z,t) and determine the value of cnx,ny,nz in 
terms of lx, ly, and lz. 
 


