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Problem 1. Prove that there exist two functions
[ 8 R-R,

such that f o g is strictly decreasing, while go f is strictly
increasing.
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Solution. Let

e A= ([_22k+1,_22k)U(zzk,22k+1
kez

)
5= U ([ -2 U ),

kezZ

Thus A=2B,B=2A, A=—-A, B=—-B, AnB = @, and finally
AU BU{0} =R. Let us take

x for xeA
f(x)=4-x for xe€B;
0 for x=0.

Take g(x) = 2f(x). Thus f(g(x)) = f(2f(x)) = —2x and
g(f () =2f(f(x) =2x. -

Problem 2. Determine all positive integers n for which
there exists a polynomial f(x) with real coefficients, with the
following properties:

(1) for eachinteger k, the number f (k) is an integer if and
only if k is not divisible by n;

(2) the degree of f isless than n.
(HUNGARY) GEzA KOs
Solution. We will show that such polynomial exists if and
onlyif n =1 or n is a power of a prime.

We will use two known facts stated in Lemmata 1 and 2.

LEMMA 1. If p? is a power of a prime and k is an integer,
then (k—=1D(k—=2)...(k—p®+1)

(p?—-1!
if k is not divisible by p“.

is divisible by p if and only

Proof. First suppose that p? | k and consider

(k-D(k-2)---(k-p*+1) k-1 k-2 k-p%+1
(pa—1)! S pi-1 pa-2 1

In every fraction on the right-hand side, p has the same
maximal exponent in the numerator as in the denominator.

Therefore, the product (which is an integer) is not divisible
by p.
Now suppose that p® 1 k. We have
(k-1D(k-2)---(k—=p®+1) _p® k(k—1)---(k—p*+1)
(pa-1)! ok (p™)! '

a
The last fraction is an integer. In the fraction %, the denom-
inator k is not divisible by p®. O

LEMMA 2. If g(x) is a polynomial with degree less than n
then

n [ n
Y (-1 p gx+n—-20)=0.
=0

Proof. Apply induction on n. For n =1 then g(x) is a con-
stant and

1 1
(O)g(x+ 1)- (1)g(x) =glx+1)-gkx)=0.

Now assume that n» > 1 and the Lemma holds for n—1. Let
h(x) = g(x+1) — g(x); the degree of h is less than the degree
of g, so the induction hypothesis applies for g and n—1:

n-l n-1
Y -1f , |pxen-1-0=0
=0

il n-1
Y (-1 ’ (gx+n-0)-gx+n-1-0))=0
£=0
n—1 o n-1
( 0 )g(x+n)+;_1(—l) ((ﬁ_l)Jr
n-1 VNN _
( / ))g(x+n 0)—(-1) (n_l)g(x)—o

Y (-1 /|g+n-0=0.
=0

O

LEMMA 3. If n has at least two distinct prime divisors then

the greatest common divisor of (}), (5),...,(,," ) is 1.

Proof. Suppose to the contrary that p is a common prime
divisor of (7),...,(,," ). In particular, p | (}) = n. Let a be the
exponent of p in the prime factorization of n. Since 7 has at
least two prime divisors, we have 1 < p? < n. Hence, (pa"_l)
and () are listed among (}),..., (,,",) and thus p | () and
p | (ya ). But then p divides () = (,a,) = (1), which

pi-1 p*
contradicts Lemma 1. O



Next we construct the polynomial f(x) when n =1 or nis
a power of a prime.

Forn=1, f(x) = % is such a polynomial.

If n = p* where p is a prime and a is a positive integer
then let

f(x):l x—1 :l‘(x—l)(x—z)...(x_paJrl)
plpt-1 p (pe—1)!

The degree of this polynomial is p? -1 =n-1.
The number (k_l)(k(_;a):{ﬁ_p U is an integer for any inte-
ger k, and, by Lemma 1, it is divisible by p if and only if k is

not divisible by p* = n.

Finally we prove that if n has at least two prime divisors
then no polynomial f(x) satisfies (1,2). Suppose that some
polynomial f(x) satisfies (1,2), and apply Lemma 2 for g = f
and x = —k where 1 < k < n—1. We get that

n _o[n
( )f(()) = Y nF "( )f(—k+€).

k 0<l=n,(#k ¢

Since f(=k),..., f(=1) and f(1),..., f(n — k) are all integers,
we conclude that (}) f(0) is an integer forevery 1 < k< n—1.

By dint of Lemma 3, the greatest common divisor of

(1), (3),---»(,",) is 1. Hence, there will exist some integers
Uy, Uy, ..., up—1 forwhich u; (7) +---+un-1(,,",) = 1. Then

n-1 n n-1 n
o= (£ 2] 0= E 2o
k=1 k=1

is a sum of integers. This contradicts the fact that f(0) is not
an integer. So such polynomial f(x) does not exist. |

Alternative Solution. (I. Bogdanov) We claim the answer
is n = p® for some prime p and nonnegative a.

LEMMA. For every integers a,, ..., a, there exists an integer-
valued polynomial P(x) of degree < n such that P(k) = aj
foralll<k<n.

Proof. Induction on n. For the base case n = 1 one may set
P(x) = a,. For the induction step, suppose that the polyno-
mial Pj (x) satisfies the desired property forall1<k<n-1.
Then set P(x) = P1 (x) + (@, — P1 () (*~}); since (“71) = 0 for
l<k<n-1and (Z:i) = 1, the polynomial P(x) is a sought
one. (]

Now, if for some n there exists some polynomial f(x)
satisfying the problem conditions, one may choose some
integer-valued polynomial P(x) (of degree < n—1) coincid-
ing with f(x) at points 1,...,n—1. The difference f;(x) =
f(x) — P(x) also satisfies the problem conditions, therefore
we may restrict ourselves to the polynomials vanishing at
points 1,...,n— 1 — that are, the polynomials of the form
flx) = cH?;ll (x — i) for some (surely rational) constant c.

2

Let ¢ = p/q be its irreducible form, and g = H?:l p?j be the
prime decomposition of the denominator.

1. Assume that a desired polynomial f(x) exists. Since
£(0) is not an integer, we have g1 (—1)""1(n—1)! and hence
p?j 1 (=1)""}(n-1)! for some j. Hence

n-1

[Tw; -d=ED""(n-D!%0 (mod p),
i=1

therefore f (p;.x") is not integer, too. By the condition (i), this
means that n | p?i, and hence n should be a power of a
prime.

2. Now let us construct a desired polynomial f(x) for any
power of a prime n = p®. We claim that the polynomial

1 (x - 1) n (x)
fx) == =—

pln-1 px\n
fits. Actually, consider some integer x. From the first repre-
sentation, the denominator of the irreducible form of f(x)
may be 1 or p only. If p® { x, then the prime decomposition
of the fraction n/(px) contains p with a nonnegative expo-
nent; hence f(x) is integer. On the other hand, if n = p® | x,
then the numbers x—1,x-2,...,x— (n—1) contain the same
exponents of primes as the numbers n—1,n-2,...,1 respec-
tively; hence the number

x-1) M5 -1
n=1) [ n-10
is not divisible by p. Thus f(x) is not an integer. |

Problem 3. A triangle ABC is inscribed in a circle w. A
variable line ¢ chosen parallel to BC meets segments AB,
AC at points D, E respectively, and meets w at points K, L
(where D lies between K and E). Circle y; is tangent to the
segments KD and BD and also tangent to w, while circle y,
is tangent to the segments LE and CE and also tangent to w.
Determine the locus, as ¢ varies, of the meeting point of the
common inner tangents to y; and y».

(RUSSIA) VASILY MOKIN & FEDOR IVLEV

Solution. Let P be the meeting point of the common in-
ner tangents to y; and y». Also, let b be the angle bisec-
tor of Z/ZBAC. Since KL || BC, b is also the angle bisector
of ZKAL.

Let $) be the composition of the symmetry & with respect
to b and the inversion J of centre A and ratio v AK - AL (it is
readily seen that & and J commute, so since &% = J2 = id,
then also $2 = id, the identical transformation). The ele-
ments of the configuration interchanged by $) are summa-
rized in Table I.

Let O; and O be the centres of circles y; and y;. Since
the circles y; and y, are determined by their construc-
tion (in a unique way), they are interchanged by $), there-
fore the rays AO; and AO, are symmetrical with respect



to b. Denote by p; and p, the radii of y; and y». Since
Z01AB = L0, AC, we have p,/p, = AO;/AO,. On the
other hand, from the definition of P we have O,P/O,P =
p1/p2 = AO1/ AO»; this means that AP is the angle bisector
of Z/0; AO, and therefore of Z/BAC.

The limiting, degenerated, cases are when the parallel
line passes through A — when P coincides with A; respec-
tively when the parallel line is BC — when P coincides with
the foot A’ € BC of the angle bisector of ZBAC (or any
other point on BC). By continuity, any point P on the open
segment AA’ is obtained for some position of the parallel,
therefore the locus is the open segment AA’ of the angle bi-
sector b of ZBAC. ]

point K — point L
lineKL | — | circlew
ray AB — ray AC
point B — point E
point C — point D
segment BD| — |segment EC
arc BK —— | segment EL
arc CL ~— |segment DK

TABLE I: Elements interchanged by $).




