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Problem 1. Given a finite group of boys and girls, a covering set of boys is a set of boys such
that every girl knows at least one boy in that set; and a covering set of girls is a set of girls such
that every boy knows at least one girl in that set. Prove that the number of covering sets of boys
and the number of covering sets of girls have the same parity. (Acquaintance is assumed to be
mutual.)

(Poland) Marek Cygan

Solution 1. A set X of boys is separated from a set Y of girls if no boy in X is an acquaintance
of a girl in Y . Similarly, a set Y of girls is separated from a set X of boys if no girl in Y is an
acquaintance of a boy in X. Since acquaintance is assumed mutual, separation is symmetric: X
is separated from Y if and only if Y is separated from X.

This enables doubly counting the number n of ordered pairs (X,Y ) of separated sets X,
of boys, and Y , of girls, and thereby showing that it is congruent modulo 2 to both numbers in
question.

Given a set X of boys, let YX be the largest set of girls separated from X, to deduce that
X is separated from exactly 2|YX | sets of girls. Consequently, n =

∑
X 2|YX | which is clearly

congruent modulo 2 to the number of covering sets of boys.
Mutatis mutandis, the argument applies to show n congruent modulo 2 to the number of

covering sets of girls.

Remark. The argument in this solution translates verbatim in terms of the adjancency matrix
of the associated acquaintance graph.

Solution 2. (Ilya Bogdanov) Let B denote the set of boys, let G denote the set of girls and
induct on |B|+ |G|. The assertion is vacuously true if either set is empty.

Next, fix a boy b, let B′ = B \ {b}, and let G′ be the set of all girls who do not know b.
Notice that:

(1) a covering set of boys in B′ ∪G is still one in B ∪G; and

(2) a covering set of boys in B ∪G which is no longer one in B′ ∪G is precisely the union of a
covering set of boys in B′ ∪G′ and {b},

so the number of covering sets of boys in B ∪G is the sum of those in B′ ∪G and B′ ∪G′.
On the other hand,

(1′) a covering set of girls in B ∪G is still one in B′ ∪G; and

(2′) a covering set of girls in B′ ∪G which is no longer one in B ∪G is precisely a covering set
of girls in B′ ∪G′,

so the number of covering sets of girls in B ∪G is the difference of those in B′ ∪G and B′ ∪G′.
Since the assertion is true for both B′ ∪ G and B′ ∪ G′ by the induction hypothesis, the

conclusion follows.
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Solution 3. (Géza Kós) Let B and G denote the sets of boys and girls, respectively. For every
pair (b, g) ∈ B × G, write f(b, g) = 0 if they know each other, and f(b, g) = 1 otherwise. A set
X of boys is covering if and only if

∏
g∈G

(
1−

∏
b∈X

f(b, g)

)
= 1.

Hence the number of covering sets of boys is

∑
X⊆B

∏
g∈G

(
1−

∏
b∈X

f(b, g)

)
≡
∑
X⊆B

∏
g∈G

(
1 +

∏
b∈X

f(b, g)

)
=
∑
X⊆B

∑
Y⊆G

∏
b∈X

∏
g∈Y

f(b, g) (mod 2).

By symmetry, the same is valid for the number of covering sets of girls.
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Problem 2. Given a triangle ABC, let D, E, and F respectively denote the midpoints of the
sides BC, CA, and AB. The circle BCF and the line BE meet again at P , and the circle ABE
and the line AD meet again at Q. Finally, the lines DP and FQ meet at R. Prove that the
centroid G of the triangle ABC lies on the circle PQR.

(United Kingdom) David Monk

Solution 1. We will use the following lemma.
Lemma. Let AD be a median in triangle ABC. Then cot∠BAD = 2 cotA + cotB and

cot∠ADC = 1
2(cotB − cotC).

Proof. Let CC1 and DD1 be the perpendiculars from C and D to AB. Using the signed
lengths we write

cotBAD =
AD1

DD1
=

(AC1 +AB)/2

CC1/2
=

CC1 cotA+ CC1(cotA+ cotB)

CC1
= 2 cotA+ cotB.

Similarly, denoting by A1 the projection of A onto BC, we get

cotADC =
DA1

AA1
=

BC/2−A1C

AA1
=

(AA1 cotB +AA1 cotC)/2−AA1 cotC

AA1
=

cotB − cotC

2
.

The Lemma is proved.

Turning to the solution, by the Lemma we get

cot∠BPD = 2 cot∠BPC + cot∠PBC = 2 cot∠BFC + cot∠PBC (from circle BFPC)

= 2 · 1
2
(cotA− cotB) + 2 cotB + cotC = cotA+ cotB + cotC.

Similarly, cot∠GQF = cotA+ cotB + cotC, so ∠GPR = ∠GQF and GPRQ is cyclic.

Remark. The angle ∠GPR = ∠GQF is the Brocard angle.

Solution 2. (Ilya Bogdanov and Marian Andronache) We also prove that ∠(RP,PG) = ∠(RQ,QG),
or ∠(DP,PG) = ∠(FQ,QG).

Let S be the point on ray GD such that AG · GS = CG · GF (so the points A, S, C, F
are concyclic). Then GP · GE = GP · 1

2GB = 1
2CG · GF = 1

2AG · GS = GD · GS, hence the
points E, P , D, S are also concyclic, and ∠(DP,PG) = ∠(GS, SE). The problem may therefore
be rephrased as follows:

Given a triangle ABC, let D, E and F respectively denote the midpoints of the sides BC, CA
and AB. The circle ABE, respectively, ACF , and the line AD meet again at Q, respectively, S.
Prove that ∠AQF = ∠ASE (and ES = FQ).

A

B C
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Upon inversion of pole A, the problem reads:

Given a triangle AE′F ′, let the symmedian from A meet the medians from E′ and F ′ at K = Q′

and L = S′, respectively. Prove that the angles AE′L and AF ′K are congruent.

A

X
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MN

V

To prove this, denote E′ = X, F ′ = Y . Let the symmedian from A meet the side XY at
V and let the lines XL and Y K meet the sides AY and AX at M and N , respectively. Since
the points K and L lie on the medians, we have VM ∥ AX, V N ∥ AY . Hence AMVN is
a parallelogram, the symmedian AV of triangle AXY supports the median of triangle AMN ,
which implies that the triangles AMN and AXY are similar. Hence the points M , N , X, Y are
concyclic, and ∠AXM = ∠AY N , QED.

Remark 1. We know that the points X, Y , M , N are concyclic. Invert back from A and
consider the circles AFQ and AES : the former meets AC again at M ′ and the latter meets AB
again at N ′. Then the points E, F , M ′, N ′ are concyclic.

Remark 2. The inversion at pole A also allows one to show that ∠AQF is the Brocard angle,
thus providing one more solution. In our notation, it is equivalent to the fact that the points Y ,
K, and Z are collinear, where Z is the Brocard point (so ∠ZAX = ∠ZY A = ∠ZXY ). This is
valid because the lines AV , XK, and Y Z are the radical axes of the following circles: (i) passing
through X and tangent to AY at A; (ii) passing through Y and tangent to AX at A; and (iii)
passing through X and tangent to AY at Y . The point K is the radical center of these three
circles.

Solution 3. (Ilya Bogdanov) Again, we will prove that ∠(DP,PG) = ∠(FQ,QG). Mark a point
T on the ray GF such that GF ·GT = GQ ·GD; then the points F , Q, D, T are concyclic, and
∠(FQ,QG) = ∠(TG, TD) = ∠(TC, TD).
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Shift the point P by the vector
−−→
BD to obtain point P ′. Then ∠(DP,PG) = ∠(CP ′, P ′D),

and we need to prove that ∠(CP ′, P ′D) = ∠(CT, TD). This is precisely the condition that the
points T , D, C, P ′ be concyclic.

Denote GE = x, GF = y. Then GP · GB = GC · GF , so GP = y2/x. On the other
hand, GB ·GE = GQ ·GA = 2GQ ·GD = 2GT ·GF , so GT = x2/y. Denote by K the point of
intersection of DP ′ and CT ; we need to prove that TK ·KC = DK ·KP ′.

Now, DP ′ = BP = BG+GP = 2x+y2/x, CT = CG+GT = 2y+x2/y, DK = BG/2 = x,
CK = CG/2 = y. Hence the desired equality reads x(x+ y2/x) = y(y + x2/y) which is obvious.

Remark. The points B, T , E, and C are concyclic, hence the point T is also of the same
kind as P and Q.
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Problem 3. Each positive integer number is coloured red or blue. A function f from the set of
positive integer numbers into itself has the following two properties:

(a) if x ≤ y, then f(x) ≤ f(y); and

(b) if x, y and z are all (not necessarily distinct) positive integer numbers of the same colour
and x+ y = z, then f(x) + f(y) = f(z).

Prove that there exists a positive number a such that f(x) ≤ ax for all positive integer numbers x.

(United Kingdom) Ben Elliott

Solution. For integer x, y, by a segment [x, y] we always mean the set of all integers t such that
x ≤ t ≤ y; the length of this segment is y − x.

If for every two positive integers x, y sharing the same colour we have f(x)/x = f(y)/y,
then one can choose a = max{f(r)/r, f(b)/b}, where r and b are arbitrary red and blue numbers,
respectively. So we can assume that there are two red numbers x, y such that f(x)/x ̸= f(y)/y.

Set m = xy. Then each segment of length m contains a blue number. Indeed, assume that
all the numbers on the segment [k, k +m] are red. Then

f(k +m) = f(k + xy) = f(k + x(y − 1)) + f(x) = · · · = f(k) + yf(x),

f(k +m) = f(k + xy) = f(k + (x− 1)y) + f(y) = · · · = f(k) + xf(y),

so yf(x) = xf(y) — a contradiction. Now we consider two cases.

Case 1. Assume that there exists a segment [k, k + m] of length m consisting of blue
numbers. Define D = max{f(k), . . . , f(k +m)}. We claim that f(z) − f(z − 1) ≤ D, whatever
z > k, and the conclusion follows. Consider the largest blue number b1 not exceeding z, so
z − b1 ≤ m, and some blue number b2 on the segment [b1 + k, b1 + k + m], so b2 > z. Write
f(b2) = f(b1) + f(b2 − b1) ≤ f(b1) +D to deduce that f(z + 1) − f(z) ≤ f(b2) − f(b1) ≤ D, as
claimed.

Case 2. Each segment of length m contains numbers of both colours. Fix any red number
R ≥ 2m such that R + 1 is blue and set D = max{f(R), f(R + 1)}. Now we claim that
f(z + 1)− f(z) ≤ D, whatever z > 2m. Consider the largest red number r not exceeding z and
the largest blue number b smaller than r ; then 0 < z − b = (z − r) + (r − b) ≤ 2m, and b+ 1 is
red. Let t = b + R + 1; then t > z. If t is blue, then f(t) = f(b) + f(R + 1) ≤ f(b) + D, and
f(z + 1) − f(z) ≤ f(t) − f(b) ≤ D. Otherwise, f(t) = f(b + 1) + f(R) ≤ f(b + 1) + D, hence
f(z + 1)− f(z) ≤ f(t)− f(b+ 1) ≤ D, as claimed.
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