- 1 For a finite non empty set of primes P, let m(P) denote the largest possible number of consecutive positive integers, each of which is divisible by at least one member of P
 - (i) Show that $|P| \leq m(P)$, with equality if and only if min(P) > |P|
 - (*ii*) Show that $m(P) < (|P|+1)(2^{|P|}-1)$
 - (The number |P| is the size of set P)
- 2 For each positive integer n, find the largest integer C_n with the following property. Given any n-real valued functions $f_1(x), f_2(x), \dots, f_n(x)$ defined on the closed interval $0 \le x \le 1$, one can find numbers x_1, x_2, \dots, x_n , such that $0 \le x_i \le 1$ satisfying $|f_1(x_1) + f_2(x_2) + \dots + f_n(x_n) - x_1x_2 \cdots x_n| \ge C_n$
- 3 Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each i = 1, 2, 3, 4, define ω_1 to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo 4 so $A_0 = A_4, A_5 = A_1$ and $A_6 = A_2$). Let T_i be the point of tangency of ω_i with A_iA_{i+1} . Prove that the lines A_1A_2, A_3A_4 and T_2T_4 are concurrent if and only if the lines A_2A_3, A_4A_1 and T_1T_3 are concurrent.
- 4 Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A = (a_1, a_2)$ and $B = (b_1, b_2)$ in the plane, satisfying the following conditions.
 - (i) A is an integer point (i.e a_1 and a_2 are integers);
 - (*ii*) $|a_1 b_1| + |a_2 b_2| = 2010;$
 - (*iii*) $f(n_1, n_2) > f(a_1, a_2)$ for all integer points (n_1, n_2) in the plane other than A;
 - $(iv) f(x_1, x_2) > f(b_1, b_2)$ for all integer points (x_1, x_2) in the plane other than B
- 5 Let n be a given positive integer. Say that a set K of points with integer coordinates in the plane is connected if for every pair of points $R, S \in K$, if there exists a positive integer l and a sequence $R = T_0.T_1, T_2, \dots T_l = S$ of points in K, where each T_i is distance 1 away from T_{i+1} . For such a set K, we define the set of vectors $\Delta(K) = \{\overrightarrow{RS} | R, S \in K\}$. What is the maximum value of $|\Delta(K)|$ over all connected sets K of 2n + 1 points with integer coordinates in the plane?
- 6 Given a polynomial f(x) with rational coefficients, with degree $d \ge 2$, we define a sequence of sets $f^0(\mathbb{Q}), f^1(\mathbb{Q}), \cdots$ as $f^0(\mathbb{Q}) = 0, f^{n+1}(\mathbb{Q}) = f(f^{n-1}(\mathbb{Q}))$ for $n \ge 0$. (Given a set S, we write f(S) for the set $\{f(x), x \in S\}$)

Let $f^{\omega}(\mathbb{Q}) = \bigcap_{n=0}^{\infty} f^n(\mathbb{Q})$ be the set of numbers that are in all of the sets $f^n(\mathbb{Q})$. Prove that $f^{\omega}(\mathbb{Q})$ is a finite set.