Romanian Masters In Mathematics

2010

1 For a finite non empty set of primes P, let $m(P)$ denote the largest possible number of consecutive positive integers, each of which is divisible by at least one member of P
(i) Show that $|P| \leq m(P)$, with equality if and only if $\min (P)>|P|$
(ii) Show that $m(P)<(|P|+1)\left(2^{|P|}-1\right)$
(The number $|P|$ is the size of set P)
2 For each positive integer n, find the largest integer C_{n} with the following property. Given any n-real valued functions $f_{1}(x), f_{2}(x), \cdots, f_{n}(x)$ defined on the closed interval $0 \leq x \leq 1$, one can find numbers $x_{1}, x_{2}, \cdots x_{n}$, such that $0 \leq x_{i} \leq 1$ satisfying $\mid f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots f_{n}\left(x_{n}\right)-$ $x_{1} x_{2} \cdots x_{n} \mid \geq C_{n}$

53 Let $A_{1} A_{2} A_{3} A_{4}$ be a quadrilateral with no pair of parallel sides. For each $i=1,2,3,4$, define ω_{1} to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1} A_{i}, A_{i} A_{i+1}$ and $A_{i+1} A_{i+2}$ (indices are considered modulo 4 so $A_{0}=A_{4}, A_{5}=A_{1}$ and $A_{6}=A_{2}$). Let T_{i} be the point of tangency of ω_{i} with $A_{i} A_{i+1}$. Prove that the lines $A_{1} A_{2}, A_{3} A_{4}$ and $T_{2} T_{4}$ are concurrent if and only if the lines $A_{2} A_{3}, A_{4} A_{1}$ and $T_{1} T_{3}$ are concurrent.

4 Determine whether there exists a polynomial $f\left(x_{1}, x_{2}\right)$ with two variables, with integer coefficients, and two points $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$ in the plane, satisfying the following conditions.
(i) A is an integer point (i.e a_{1} and a_{2} are integers);
(ii) $\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|=2010$;
(iii) $f\left(n_{1}, n_{2}\right)>f\left(a_{1}, a_{2}\right)$ for all integer points $\left(n_{1}, n_{2}\right)$ in the plane other than A;
(iv) $f\left(x_{1}, x_{2}\right)>f\left(b_{1}, b_{2}\right)$ for all integer points $\left(x_{1}, x_{2}\right)$ in the plane other than B

5 Let n be a given positive integer. Say that a set K of points with integer coordinates in the plane is connected if for every pair of points $R, S \in K$, if there exists a positive integer l and a sequence $R=T_{0} \cdot T_{1}, T_{2}, \cdots T_{l}=S$ of points in K, where each T_{i} is distance 1 away from T_{i+1}. For such a set K, we define the set of vectors $\Delta(K)=\{\overrightarrow{R S} \mid R, S \in K\}$. What is the maximum value of $|\Delta(K)|$ over all connected sets K of $2 n+1$ points with integer coordinates in the plane?

6 Given a polynomial $f(x)$ with rational coefficients, with degree $d \geq 2$, we define a sequence of sets $f^{0}(\mathbb{Q}), f^{1}(\mathbb{Q}), \cdots$ as $f^{0}(\mathbb{Q})=0, f^{n+1}(\mathbb{Q})=f\left(f^{n-1}(\mathbb{Q})\right)$ for $n \geq 0$. (Given a set S, we write $f(S)$ for the set $\{f(x), x \in S\}$)
Let $f^{\omega}(\mathbb{Q})=\bigcap_{n=0}^{\infty} f^{n}(\mathbb{Q})$ be the set of numbers that are in all of the sets $f^{n}(\mathbb{Q})$. Prove that $f^{\omega}(\mathbb{Q})$ is a finite set.

