Problem 4. Prove that there are infinitely many positive integers $n$ such that $2^{2^{n}+1}+1$ is divisible by $n$ but $2^{n}+1$ is not.

Problem 5. Given a positive integer $n \geq 3$, colour each cell of an $n \times n$ square array with one of $\left\lfloor(n+2)^{2} / 3\right\rfloor$ colours, each colour being used at least once. Prove that there is some $1 \times 3$ or $3 \times 1$ rectangular subarray whose three cells are coloured with three different colours.

Problem 6. Let $A B C$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_{A}$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $A B C$; the circles $\omega_{B}$ and $\omega_{C}$ are defined similarly. The circles $\omega_{B}$ and $\omega_{C}$ meet at a point $A^{\prime}$ distinct from $A$; the points $B^{\prime}$ and $C^{\prime}$ are defined similarly. Prove that the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent at a point on the line $I O$.

Each of the three problems is worth 7 points.
Time allowed $4 \frac{1}{2}$ hours.

