

The $9^{\text {th }}$ Romanian Master of Mathematics Competition

Day 1: Friday, February 24, 2017, Bucharest

Language: English

Problem 1. (a) Prove that every positive integer n can be written uniquely in the form

$$
n=\sum_{j=1}^{2 k+1}(-1)^{j-1} 2^{m_{j}},
$$

where $k \geq 0$ and $0 \leq m_{1}<m_{2}<\cdots<m_{2 k+1}$ are integers.
This number k is called the weight of n.
(b) Find (in closed form) the difference between the number of positive integers at most 2^{2017} with even weight and the number of positive integers at most 2^{2017} with odd weight.

Problem 2. Determine all positive integers n satisfying the following condition: for every monic polynomial P of degree at most n with integer coefficients, there exists a positive integer $k \leq n$, and $k+1$ distinct integers $x_{1}, x_{2}, \ldots, x_{k+1}$ such that

$$
P\left(x_{1}\right)+P\left(x_{2}\right)+\cdots+P\left(x_{k}\right)=P\left(x_{k+1}\right) .
$$

Note. A polynomial is monic if the coefficient of the highest power is one.
Problem 3. Let n be an integer greater than 1 and let X be an n-element set. A non-empty collection of subsets A_{1}, \ldots, A_{k} of X is tight if the union $A_{1} \cup \cdots \cup A_{k}$ is a proper subset of X and no element of X lies in exactly one of the $A_{i} \mathrm{~s}$. Find the largest cardinality of a collection of proper non-empty subsets of X, no non-empty subcollection of which is tight.
Note. A subset A of X is proper if $A \neq X$. The sets in a collection are assumed to be distinct. The whole collection is assumed to be a subcollection.

Each of the three problems is worth 7 points.
Time allowed $4 \frac{1}{2}$ hours.

