

The 9th Romanian Master of Mathematics Competition

Day 1: Friday, February 24, 2017, Bucharest

Language: English

Problem 1. (a) Prove that every positive integer n can be written uniquely in the form

$$n = \sum_{j=1}^{2k+1} (-1)^{j-1} 2^{m_j},$$

where $k \ge 0$ and $0 \le m_1 < m_2 < \cdots < m_{2k+1}$ are integers. This number k is called the *weight* of n.

(b) Find (in closed form) the difference between the number of positive integers at most 2^{2017} with even weight and the number of positive integers at most 2^{2017} with odd weight.

Problem 2. Determine all positive integers n satisfying the following condition: for every monic polynomial P of degree at most n with integer coefficients, there exists a positive integer $k \leq n$, and k+1 distinct integers $x_1, x_2, \ldots, x_{k+1}$ such that

$$P(x_1) + P(x_2) + \dots + P(x_k) = P(x_{k+1}).$$

Note. A polynomial is monic if the coefficient of the highest power is one.

Problem 3. Let *n* be an integer greater than 1 and let *X* be an *n*-element set. A non-empty collection of subsets A_1, \ldots, A_k of *X* is *tight* if the union $A_1 \cup \cdots \cup A_k$ is a proper subset of *X* and no element of *X* lies in exactly one of the A_i s. Find the largest cardinality of a collection of proper non-empty subsets of *X*, no non-empty subcollection of which is tight.

Note. A subset A of X is proper if $A \neq X$. The sets in a collection are assumed to be distinct. The whole collection is assumed to be a subcollection.

Each of the three problems is worth 7 points. Time allowed $4\frac{1}{2}$ hours.