The 13" Romanian Master of Mathematics Competition

Day 2 — Solutions

Problem 4. Consider an integer n > 2 and write the numbers 1, 2, ..., n down on a board. A
move consists in erasing any two numbers a and b, and, for each ¢ in {a + b, |a — b}, writing ¢
down on the board, unless c is already there; if ¢ is already on the board, do nothing. For all
integers n > 2, determine whether it is possible to be left with exactly two numbers on the board
after a finite number of moves.

CHINA

Solution. The answer is in the affirmative for all n > 2. Induct on n. Leaving aside the trivial
case n = 2, deal first with particular cases n =5 and n = 6.

If n = 5, remove first the pair (2,5), notice that 3 = |2 — 5| is already on the board, so
7 =2+ 5 alone is written down. Removal of the pair (3,4) then leaves exactly two numbers on
the board, 1 and 7, since |3 + 4| are both already there.

If n = 6, remove first the pair (1,6), notice that 5 = |1 — 6| is already on the board, so
7 = 1+ 6 alone is written down. Next, remove the pair (2,5) and notice that |2 £ 5| are both
already on the board, so no new number is written down. Finally, removal of the pair (3,4)
provides a single number to be written down, 1 = |3 — 4], since 7 = 3+ 4 is already on the board.
At this stage, the process comes to an end: 1 and 7 are the two numbers left.

In the remaining cases, the problem for n is brought down to the corresponding problem
for [n/2] < n by a finite number of moves. The conclusion then follows by induction.

Let n = 4k or 4k —1, where k is a positive integer. Remove the pairs (1,4k—1), (3,4k—3), ...,
(2k—1,2k+1) in turn. Each time, two odd numbers are removed, and the corresponding ¢ = |a=b|
are even numbers in the range 2 through 4k, of which one is always 4k. These even numbers are
already on the board at each stage, so no c is to be written down, unless n = 4k — 1 in which
case 4k is written down during the first move. The outcome of this k-move round is the string
of even numbers 2 through 4k written down on the board. At this stage, the problem is clearly
brought down to the case where the numbers on the board are 1, 2, ..., 2k = [n/2], as desired.

Finally, let n = 4k + 1 or 4k +2, where k > 2. Remove first the pair (4, 2k + 1) and notice that
no new number is to be written down on the board, since 4 + (2k +1) =2k +5 <4k +1 < n.
Next, remove the pairs (1,4k + 1), (3,4k — 1), ..., (2k — 1,2k + 3) in turn. As before, at each
of these stages, two odd numbers are removed; the corresponding ¢ = |a £ b| are even numbers,
this time in the range 4 through 4k + 2, of which one is always 4k + 2; and no new numbers are
to be written down on the board, except 4 = [(2k — 1) — (2k + 3)| during the last move, and,
possibly, 4k +2 = 1+ (4k + 1) during the first move if n = 4k + 1. Notice that 2 has not yet been
involved in the process, to conclude that the outcome of this (k + 1)-move round is the string of
even numbers 2 through 4k + 2 written down on the board. At this stage, the problem is clearly
brought down to the case where the numbers on the board are 1, 2, ..., 2k + 1 = [n/2], as
desired.

Solution 2. We will prove the following, more general statement:

Claim. Write down a finite number (at least two) of pairwise distinct positive integers on a
board. A move consists in erasing any two numbers a and b, and, for each ¢ in {a + b, |a — b|},
writing ¢ down on the board, unless c is already there; if ¢ is already on the board, do nothing.
Then it is possible to be left with exactly two numbers on the board after a finite number of moves.



Notice that, if we divide all numbers on the board by some common factor, the resulting
process goes on equally well. Such a reduction can therefore be performed after any move.

Notice that we cannot be left with less than two numbers. So it suffices to show that, given k&
positive integers on the board, k > 3, we can always decrease their number by at least 1. Arguing
indirectly, choose a set of k > 3 positive integers S = {a1,...,ax} which cannot be reduced in
size by a sequence of moves, having a minimal possible sum ¢. So, in any sequence of moves
applied to S, two numbers are erased and exactly two numbers appear on each move. Moreover,
the sum of any resulting set of £ numbers is at least o.

Notice that, given two numbers a > b on the board, we can replace them by a + b and
a — b, and then, performing a move on the two new numbers, by (a + b) + (¢ — b) = 2a and
(a+b) — (a — b) = 2b. So we can double any two numbers on the board.

We now show that, if the board contains two even numbers a and b, we can divide them both
by 2, while keeping the other numbers unchanged. If k is even, split the other numbers into pairs
to multiply each pair by 2; then clear out the common factor 2. If k is odd, split all numbers but
a into pairs to multiply each by 2; then do the same for all numbers but b; finally, clear out the
common factor 4.

Back to the problem, if two of the numbers aq, ..., a; are even, reduce them both by 2 to get
a set with a smaller sum, which is impossible. Otherwise, two numbers, say, a; < ao, are odd,
and we may replace them by the two even numbers a1 + a2 and as — a1, and then by %(al + ag)
and %(ag —ay), to get a set with a smaller sum, which is again impossible.



Problem 5. Let n be a positive integer. The kingdom of Zoomtopia is a convex polygon with
integer sides, perimeter 6n, and 60° rotational symmetry (that is, there is a point O such that
a 60° rotation about O maps the polygon to itself). In light of the pandemic, the government of
Zoomtopia would like to relocate its 3n% + 3n + 1 citizens at 3n% + 3n + 1 points in the kingdom
so that every two citizens have a distance of at least 1 for proper social distancing. Prove that
this is possible. (The kingdom is assumed to contain its boundary.)
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Solution. Let P denote the given polygon, i.e., the kingdom of Zoomtopia. Throughout the
solution, we interpret polygons with integer sides and perimeter 6k as 6k-gons with unit sides
(some of their angles may equal 180°). The argument hinges on the claim below:

Claim. Let P be a convex polygon satisfying the problem conditions — i.e., it has integer sides,
perimeter 6n, and 60° rotational symmetry. Then P can be tiled with unit equilateral triangles
and unit lozenges with angles at least 60°, with tiles meeting completely along edges, so that the
tile configuration has a total of exactly 3n? + 3n + 1 distinct vertices.

Proof. Induct on n. The base case, n = 1, is clear.

Now take a polygon P of perimeter 6n > 12. Place six equilateral triangles inwards on six
edges corresponding to each other upon rotation at 60°. It is possible to stick a lozenge to each
other edge, as shown in the Figure below.

We show that all angles of the lozenges are at least 60°. Let an edge XY of the polygon
bearing some lozenge lie along a boundary segment betwgg edges AB and C'D bearing equilateral
triangles ABP and CD(Q. Then the angle formed by XY and B? is between those formed by
E, BT; and C@, C@, i.e., between 60° and 120°, as desired.

Removing all obtained tiles, we get a 60°-symmetric convex 6(n—1)-gon with unit sides which
can be tiled by the inductive hypothesis. Finally, the number of vertices in the tiling of P is
6n+3(n—124+3n—1)+1=3n%+3n+1, as desired.

Using the Claim above, we now show that the citizens may be placed at the 3n? + 3n + 1 tile
vertices.

Consider any tile T7; its vertices are at least 1 apart from each other. Moreover, let BAC be
a part of the boundary of some tile T', and let X be any point of the boundary of T', lying outside
the half-open intervals [A, B) and [A, C') (in this case, we say that X is not adjacent to A). Then
AX >+/3)/2.

Now consider any two tile vertices A and B. If they are vertices of the same tile we already
know AB > 1; otherwise, the segment AB crosses the boundaries of some tiles containing A and B
at some points X and Y not adjacent to A and B, respectively. Hence AB > AX+Y B > /3 > 1.



Problem 6. Initially, a non-constant polynomial S(z) with real coefficients is written down on
a board. Whenever the board contains a polynomial P(x), not necessarily alone, one can write
down on the board any polynomial of the form P(C +x) or C'+ P(z), where C' is a real constant.
Moreover, if the board contains two (not necessarily distinct) polynomials P(z) and Q(z), one
can write P(Q(x)) and P(z) + Q(z) down on the board. No polynomial is ever erased from the
board.

Given two sets of real numbers, A = {aj,ag,...,a,} and B = {b1,ba,...,b,}, a polyno-
mial f(x) with real coefficients is (A, B)-nice if f(A) = B, where f(A) ={f(a;): i =1,2,...,n}.

Determine all polynomials S(z) that can initially be written down on the board such that,
for any two finite sets A and B of real numbers, with |A| = | B|, one can produce an (A, B)-nice
polynomial in a finite number of steps.
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Solution. The required polynomials are all polynomials of an even degree d > 2, and all
polynomials of odd degree d > 3 with negative leading coefficient.

Part I. We begin by showing that any (non-constant) polynomial S(x) not listed above is not
(A, B)-nice for some pair (A, B) with either |A| = |B| =2, or |A| = |B| = 3.

If S(x) is linear, then so are all the polynomials appearing on the board. Therefore, none of
them will be (A, B)-nice, say, for A ={1,2,3} and B = {1, 2,4}, as desired.

Otherwise, deg S = d > 3 is odd, and the leading coefficient is positive. In this case, we make
use of the following technical fact, whose proof is presented at the end of the solution.

Claim. There exists a positive constant 7" such that S(x) satisfies the following condition:

S()—S(a) >b—a whenever b—a>T. (%)

Fix a constant T provided by the Claim. Then, an immediate check shows that all newly
appearing polynomials on the board also satisfy (%) (with the same value of T'). Therefore, none
of them will be (A, B)-nice, say, for A ={0,T} and B = {0,7/2}, as desired.

Part II. We show that the polynomials listed in the Answer satisfy the requirements. We will
show that for any a; < ag < --- < a, and any b; < by < --- < b, there exists a polynomial f(x)
satisfying f(a;) = by(;) for all i = 1,2,...,n, where o is some permutation.

The proof goes by induction on n > 2. It is based on the following two lemmas, first of which
is merely the base case n = 2; the proofs of the lemmas are also at the end of the solution.

Lemma 1. For any a; < a2 and any by, be one can write down on the board a polynomial F'(x)
satisfying F'(a;) = b;, i = 1, 2.

Lemma 2. For any distinct numbers a; < ag < --+ < a, one can produce a polynomial F'(x)
on the board such that the list F'(a1), F(a2), ..., F(a,) contains exactly n — 1 distinct numbers,
and F'(a;) = F(ag).

Now, in order to perform the inductive step, we may replace the polynomial S(z) with its
shifted copy S(C + x) so that the values S(a;) are pairwise distinct. Applying Lemma 2, we
get a polynomial f(z) such that only two among the numbers ¢; = f(a;) coincide, namely c;
and cy. Now apply Lemma 1 to get a polynomial g(z) such that g(a;) = by and g(a2) = bs.
Apply the inductive hypothesis in order to obtain a polynomial h(x) satisfying h(c;) = b; — g(a;)
for all ¢ = 2,3,...,n. Then the polynomial h(f(x)) + g(z) is a desired one; indeed, we have
h(f(a;)) + g(ai) = h(e) + gla;)) = b; for all @ = 2,3,...,n, and finally h(f(a1)) + g(a1) =
h(c1) + g(a1) = b2 — g(az) + g(a1) = bs.

It remains to prove the Claim and the two Lemmas.

Proof of the Claim. There exists some segment A = [, §'] such that S(x) is monotone increasing
outside that segment. Now one can choose o < o/ and § > ' such that S(«) < mingea S(x) and
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S(B) > maxzea S(z). Therefore, for any x,y,z with z < a <y < <z we get S(z) < S(a) <
S(y) < 5(B) < S(z).

We may decrease o and increase [ (preserving the condition above) so that, in addition,
S'(z) > 3 for all z ¢ [, B]. Now we claim that the number T' = 3(8 — «) fits the bill.

Indeed, take any a and b with b —a > T'. Even if the segment [a, b] crosses [«, /3], there still
is a segment [a’, V'] C [a,b] \ (o, B) of length &' —a’ > (b — a)/3. Then

S(b) = S(a) = S() = S(d') = (V —a') - S'(§) =30 —a') = b—a

for some € € (d/, V).

Proof of Lemma 1. If S(x) has an even degree, then the polynomial T'(z) = S(z+a2) — S(z+a1)
has an odd degree, hence there exists xg with T'(xg) = S(xg + a2) — S(xg 4+ a1) = by — by. Setting
G(z) = S(z+z0), we see that G(az)—G(a;) = ba—by, so a suitable shift F(z) = G(z)+(b;—G(a1))
fits the bill.

Assume now that S(x) has odd degree and a negative leading coefficient. Notice that the
polynomial S?(z) := S(S(x)) has an odd degree and a positive leading coefficient. So, the
polynomial S?(x +az) — S%(z + a1) attains all sufficiently large positive values, while S(z 4 ag) —
S(xz + a1) attains all sufficiently large negative values. Therefore, the two-variable polynomial
S%(z + ag) — S*(x + a1) + S(y + az) — S(y + a1) attains all real values; in particular, there
exist g and yo with S?(x¢ + az) + S(yo + a2) — S%(zo + a1) — S(yo + a1) = bs — by. Setting
G(z) = S?*(z + w0) + S(z + yo), we see that G(az) — G(a1) = by — by, so a suitable shift of G fits
the bill.

Proof of Lemma 2. Let A denote the segment [a1; a,]. We modify the proof of Lemma 1 in order
to obtain a polynomial F' convex (or concave) on A such that F'(a;) = F(ag); then F is a desired
polynomial. Say that a polynomial H(x) is good if H is convex on A.

If deg S is even, and its leading coefficient is positive, then S(z + ¢) is good for all sufficiently
large negative ¢, and S(ag2 + ¢) — S(a; + ¢) attains all sufficiently large negative values for such c.
Similarly, S(z + ¢) is good for all sufficiently large positive ¢, and S(a2 + ¢) — S(a; + ¢) attains
all sufficiently large positive values for such c. Therefore, there exist large ¢; < 0 < ¢g such that
S(z 4+ c1) + S(x + ¢2) is a desired polynomial. If the leading coefficient of H is negative, we
similarly find a desired polynomial which is concave on A.

If degS > 3 is odd (and the leading coefficient is negative), then S(z + ¢) is good for all
sufficiently large negative ¢, and S(as+c¢) — S(a1 + ¢) attains all sufficiently large negative values
for such ¢. Similarly, S%(z+-c) is good for all sufficiently large positive ¢, and S?(az+c)—S?(ai+c)
attains all sufficiently large positive values for such c¢. Therefore, there exist large ¢; < 0 < o
such that S(z + ¢1) + S?(z 4 ¢2) is a desired polynomial.

Comment. Both parts above allow some variations.
In Part I, the same scheme of the proof works for many conditions similar to (x), e.g.,

S()—S(a) >T whenever b—a > T.

Let us sketch an alternative approach for Part II. It suffices to construct, for each ¢, a poly-
nomial f;(x) such that f;(a;) = b; and fi(a;) = 0, j # i. The construction of such polynomials
may be reduced to the construction of those for n = 3 similarly to what happens in the proof of
Lemma 2. However, this approach (as well as any in this part) needs some care in order to work

properly.



