
Problem 1. Determine all prime numbers p and all positive integers x and y satisfying x3+y3 =
p(xy + p).

Serbia, Dushan Djukitch

Solution 1. Up to a swap of the first two en-
tries, the only solutions are (x, y, p) = (1, 8, 19),
(x, y, p) = (2, 7, 13) and (x, y, p) = (4, 5, 7). The
verification is routine.

Set s = x+ y. Rewrite the equation in the form
s(s2 − 3xy) = p(p+ xy), and express xy :

xy =
s3 − p2

3s+ p
. (∗)

In particular,

s2 ≥ 4xy =
4(s3 − p2)

3s+ p
,

or

(s− 2p)(s2 + sp+ 2p2) ≤ p2 − p3 < 0,

so s < 2p.
If p | s, then s = p and xy = p(p − 1)/4

which is impossible for x + y = p (the equation
t2 − pt+ p(p− 1)/4 = 0 has no integer solutions).

If p ∤ s, rewrite (∗) in the form

27xy = (9s2 − 3sp+ p2)− p2(p+ 27)

3s+ p
.

Since p ∤ s, this could be integer only if 3s + p |
p+ 27, and hence 3s+ p | 27− s.

If s ̸= 9, then |3s − 27| ≥ 3s + p, so 27 − 3s ≥
3s + p, or 27 − p ≥ 6s, whence s ≤ 4. These cases
are ruled out by hand.

If s = x + y = 9, then (∗) yields xy = 27 − p.
Up to a swap of x and y, all such triples (x, y, p)
are (1, 8, 19), (2, 7, 13), and (4, 5, 7).

Solution 2. Set again s = x + y. It is readily
checked that s ≤ 8 provides no solutions, so as-
sume s ≥ 9. Notice that x3+y3 = s(x2−xy+y2) ≥
1
4
s3 and xy ≤ 1

4
s2. The condition in the statement

then implies s2(s− p) ≤ 4p2, so s < p+ 4.
Notice that p divides one of s and x2 − xy+ y2.

The case p | s is easily ruled out by the con-
dition s < p + 4: The latter forces s = p,

so x2 − xy + y2 = xy + p, i. e., (x− y)2 = p, which
is impossible.

Hence p | x2 − xy + y2, so x2 − xy + y2 = kp
and xy+ p = ks for some positive integer k, imply-
ing

s2 + 3p = k(3s+ p). (∗∗)

Recall that p ∤ s to infer that 3k ≡ s (mod p). We
now present two approaches.

1st Approach. Write 3k = s + mp for some
integer m and plug k = 1

3
(s + mp) into (∗∗) to

get s = (9 − mp)/(3m + 1). The condition s ≥ 9
then forces m = 0, so s = 9, in which case, up to a
swap of the first two entries, the solutions turn out
to be (x, y, p) = (1, 8, 19), (x, y, p) = (2, 7, 13) and
(x, y, p) = (4, 5, 7).

2nd Approach. Notice that k = s2+3p
3s+p

= 3 +
s(s−9)
3s+p

≤ 3+ 1
3
(s−9) = 1

3
s ≤ 1

3
(p+3), since s < p+4.

Hence 3k ≤ p + 3, and the congruence 3k ≡ s
(mod p) then forces either 3k = s− p or 3k = s.

The case 3k = s− p is easily ruled out: Other-
wise, (∗∗) boils down to 2s + p + 9 = 0, which is
clearly impossible.

Finally, if 3k = s, then (∗∗) reduces to s = 9.
In this case, up to a swap of the first two en-
tries, the only solutions are (x, y, p) = (1, 8, 19),
(x, y, p) = (2, 7, 13) and (x, y, p) = (4, 5, 7).

Remark. The upper bound for k can equally
well be established by considering the variation
of (s2 + 3p)/(3s+ p) for 1 ≤ s ≤ p+ 3. The maxi-
mum is achieved at s = p+ 3:

max
1≤s≤p+3

s2 + 3p

3s+ p
=

(p+ 3)2 + 3p

3(p+ 3) + p
=

p2 + 9p+ 9

4p+ 9

<
p+ 4

3
,

so the integer 3k ≤ p + 3 < p + 9 ≤ p + s and the
remainder of the proof now goes along the few final
lines above.



Problem 2. Fix an integer n ⩾ 3. Let S be a set of n points in the plane, no three of
which are collinear. Given different points A,B,C in S, the triangle ABC is nice for AB if
Area(ABC) ⩽ Area(ABX) for all X in S different from A and B. (Note that for a segment AB
there could be several nice triangles.) A triangle is beautiful if its vertices are all in S and it is
nice for at least two of its sides.

Prove that there are at least 1
2
(n− 1) beautiful triangles.

Bulgaria, Alexander Ivanov

Solution. For convenience, a triangle whose
vertices all lie in S will be referred to as a triangle
in S. The argument hinges on the following obser-
vation:

Given any partition of S, amongst all triangles
in S with at least one vertex in each part, those of
minimal area are all adequate.

Indeed, amongst the triangles under considera-
tion, one of minimal area is suitable for both sides
with endpoints in different parts.

We now present two approaches for the lower
bound.

1st Approach. By the above observation, the 3-
uniform hypergraph of adequate triangles is con-
nected. It is a well-known fact that such a hyper-
graph has at least 1

2
(n− 1) hyperedges, whence the

required lower bound

2nd Approach. For a partition S = A⊔B, an area
minimising triangle as above will be called (A,B)-
minimal. Thus, (A,B)-minimal triangles are all ad-
equate.

Consider now a partition of S = A ⊔ B, where
|A| = 1. Choose an (A,B)-minimal triangle and
add to A its vertices from B to obtain a new par-
tition also written S = A ⊔ B. Continuing, choose
an (A,B)-minimal triangle and add to A its ver-
tices/vertex from B and so on and so forth all the
way down for at least another 1

2
(n−5) steps — this

works at least as many times, since at each step, B
loses at most two points. Clearly, each step provides
a new adequate triangle, so the overall number of
adequate triangles is at least 1

2
(n− 1), as required.

Remark. In fact, ⌊n/2⌋ is the smallest possible
number of adequate triangles, as shown by the the
configurations described below.

Let first n = 2k − 1. Consider a regular n-gon

P = A1A2 . . . An. Choose a point Bi on the perpen-
dicular bisector of AiAi+1 outside P and sufficiently
close to the segment AiAi+1. We claim that there
are exactly k− 1 = ⌊n/2⌋ adequate triangles in the
set

S = {A1, A2, . . . , Ak, B1, B2, . . . , Bk−1}.

Notice here that the arc A1A2 . . . Ak is less than half
of the circumcircle of P , so the angles ∠AuAvAw,
1 ≤ u < v < w ≤ k, are all obtuse.

Ai

Bi

Ai+1 Aj

Bj

Aj+1

To prove the claim, list the suitable triangles for
each segment.

For segments AiAi+1, AiBi, and BiAi+1, it is
AiBiAi+1.

For segment AiAj+1, j ≥ i + 1, those are
AiBiAj+1 and AiBjAj+1.

For segment AiBj, j ≥ i+ 1, it is AiBiBj.
For segment BiAj+1, j ≥ i+ 1, it is BiBjAj+1.
For segment BiBj, i < j, those are BiAi+1Bj

and BiAjBj.
It is easily seen that the only triangles occur-

ring twice are AiBiAi+1, hence they are the only
adequate triangles.

For n = 2k − 2, just remove Ak from the
above example. This removes the adequate trian-
gle Ak−1Bk−1Ak and provides only one new such in-
stead, namely, Bk−2Ak−1Bk−1. Consequently, there
are exactly k− 1 = ⌊n/2⌋ adequate triangles in the
set

S = {A1, A2, . . . , Ak−1, B1, B2, . . . , Bk−1}.



Problem 3. Let n ⩾ 2 be an integer, and let f be a 4n-variable polynomial with real coefficients.
Assume that, for any 2n points (x1, y1), . . . , (x2n, y2n) in the plane, f(x1, y1, . . . , x2n, y2n) = 0 if
and only if the points form the vertices of a regular 2n-gon in some order, or are all equal.

Determine the smallest possible degree of f .

USA

Solution. The smallest possible degree is 2n.
In what follows, we will frequently write Ai =
(xi, yi), and abbreviate P (x1, y1, . . . , x2n, y2n) to
P (A1, . . . , A2n) or as a function of any 2n points.

Suppose that f is valid. First, we note a key
property:

Claim (Sign of f). f attains wither only nonneg-
ative values, or only nonpositive values.

Proof. This follows from the fact that the zero-set
of f is very sparse: if f takes on a positive and a
negative value, we can move A1, . . . , A2n from the
negative value to the positive value without ever
having them form a regular 2n-gon — a contradic-
tion. □

The strategy for showing deg f ≥ 2n is the fol-
lowing. We will animate the points A1, . . . , A2n

linearly in a variable t; then g(t) = f(A1, . . . , A2n)
will have degree at most deg f (assuming it is not
zero). The claim above then establishes that any
root of g must be a multiple root, so if we can show
that there are at least n roots, we will have shown
deg g ≥ 2n, and so deg f ≥ 2n.

Geometrically, our goal is to exhibit 2n linearly
moving points so that they form a regular 2n-gon a
total of n times, but not always form one.

We will do this as follows. Draw n mirrors
through the origin, as lines making angles of π

n with
each other. Then, any point P has a total of 2n
reflections in the mirrors, as shown below for n = 5.
(Some of these reflections may overlap.)

Draw the n angle bisectors of adjacent mirrors.
Observe that the reflections of P form a regular 2n-
gon if and only if P lies on one of the bisectors.

We will animate P on any line ℓ which intersects
all n bisectors (but does not pass through the ori-
gin), and let P1, . . . , P2n be its reflections. Clearly,
these are also all linearly animated, and because of
the reasons above, they will form a regular 2n-gon
exactly n times, when ℓ meets each bisector. So this
establishes deg f ≥ 2n for the reasons described pre-
viously.

Now we pass to constructing a polynomial f of
degree 2n having the desired property. First of all,
we will instead find a polynomial g which has this
property, but only when points with sum zero are
input. This still solves the problem, because then

we can choose

f(A1, A2, . . . , A2n) = g(A1 − Ā, . . . , A2n − Ā),

where Ā is the centroid of A1, . . . , A2n. This
has the upshot that we can now always assume
A1 + · · · + A2n = 0, which will simplify the ensu-
ing discussion.

ℓ

P = P1

P2

P3P4

P5

P6

P7

P8

P9 P10

P11

P12

We will now construct a suitable g as a sum of
squares. This means that, if we write g = g21 + g22 +
· · ·+g2m, then g = 0 if and only if g1 = · · · = gm = 0,
and that if their degrees are d1, . . . , dm, then g has
degree at most 2max(d1, . . . , dm).

Thus, it is sufficient to exhibit several polyno-
mials, all of degree at most n, such that 2n points
with zero sum are the vertices of a regular 2n-gon
if and only if the polynomials are all zero at those
points.



First, we will impose the constraints that all
|Ai|2 = x2i + y2i are equal. This uses multiple de-
gree 2 constraints.

Now, we may assume that the points
A1, . . . , A2n all lie on a circle with centre 0, and
A1 + · · ·+A2n = 0. If this circle has radius 0, then
all Ai coincide, and we may ignore this case.

Otherwise, the circle has positive radius. We
will use the following lemma.

Lemma. Suppose that a1, . . . , a2n are complex
numbers of the same non-zero magnitude, and sup-
pose that ak1 + · · · + ak2n = 0, k = 1, . . . , n. Then
a1, . . . , a2n form a regular 2n-gon centred at the
origin. (Conversely, this is easily seen to be suffi-
cient.)

Proof. Since all the hypotheses are homoge-
nous, we may assume (mostly for convenience) that
a1, . . . , a2n lie on the unit circle. By Newton’s
sums, the k-th symmetric sums of a1, . . . , a2n are
all zero for k in the range 1, . . ., n.

Taking conjugates yields a−k
1 + · · · + a−k

2n = 0,
k = 1, . . . , n. Thus, we can repeat the above
logic to obtain that the k-th symmetric sums of
a−1
1 , . . . , a−1

2n are also all zero for k = 1, . . . , n.
However, these are simply the (2n− k)-th symmet-
ric sums of a1, . . . , a2n (divided by a1 · · · a2n), so
the first 2n−1 symmetric sums of a1, . . . , a2n are all
zero. This implies that a1, . . . , a2n form a regular
2n-gon centred at the origin. □

We will encode all of these constraints into our
polynomial. More explicitly, write ar = xr + yri;
then the constraint ak1 + · · · + ak2n = 0 can be ex-
pressed as pk + qki = 0, where pk and qk are real
polynomials in the coordinates. To incorporate this,
simply impose the constraints pk = 0 and qk = 0;
these are conditions of degree k ≤ n, so their squares
are all of degree at most 2n.

To recap, taking the sum of squares of all of these
constraints gives a polynomial f of degree at most
2n which works whenever A1 + · · · + A2n = 0. Fi-
nally, the centroid-shifting trick gives a polynomial
which works in general, as wanted.

Remark 1. Here is a more detailed approach of the
mirror-reflection argument. Let reiθ be the polar
representation of the point P . The polar represen-
tations of its mirrored images are then

reiθ, re−iθ, rei(
2π
n
+θ), rei(

2π
n
−θ),

. . . , re
i
(

2(n−1)π
n

+θ
)
, re

i
(

2(n−1)π
n

−θ
)
.

Clearly, they are all linear with respect to P and lie
on the circle of radius r centred at the origin. As
listed above, the 2n images are not necessarily in

circular order around the circle. For convenience,
assume 0 ≤ θ ≤ π

n , so the list now displays them
in circular order. These images form the vertices of
a regular 2n-gon if and only if the angle between
every two consecutive terms in the list (read circu-
larly) is π

n . This is clearly the case if and only if
θ = π

2n . Consequently, the images are the vertices
of a regular 2n-gon if and only if P lies on the in-
ternal bisector of the angle formed by some pair of
consecutive mirrors.

Remark 2. We sketch here some versions of the
arguments in the solution above.

To show that deg f ≥ 2n, we use the same con-
stancy of sign claim and the convention that the
polynomial is a function of points (= pairs of coor-
dinates) A1, A2, . . . , A2n. Assume that the values of
f are all non-negative.

Write B(ϕ) = (cosϕ, sinϕ). Choose a sub-
stitution A2i−1 = B

(
(2i− 1)πn + ϕ

)
and A2i =

B
(
2iπn − ϕ

)
, i = 1, 2, . . . , n. Notice that the co-

ordinates of the points A1, A2, . . . , A2n are all linear
functions in c = cosϕ and s = sinϕ, so, substituting
these expressions into f , we get a polynomial g(c, s)
with deg g ≤ deg f .

Now, the values of g are all non-negative (each
being one of f), and, on the circle c2 + s2 = 1,
it vanishes at exactly 2n points, namely, (c, s) =(
cos π

nk, sin
π
nk

)
, k = 1, . . . , 2n. We show that these

properties already yield deg g ≥ 2n.
Obviously, if g(c, s) possesses the properties

listed above, then so does g(c,−s), and hence so
does ḡ(c, s) = g(c, s) + g(c,−s).

The polynomial ḡ is even in s, so it in fact de-
pends only on s2, and we may plug s2 = 1− c2 into
it, to obtain a polynomial h(c) with deg h ≤ deg g
which is non-negative on [−1, 1] and vanishes on this
segment exactly at c = cos π

nk. These are n+1 such
points, and, except c = ±1, they should all be roots
of h of even multiplicity, due to sign conservation.
All in all, this provides 2n roots of h, counted with
multiplicity, hence deg f ≥ deg g ≥ deg h ≥ 2n, as
desired.

For a bit alternative construction of a suitable f ,
one may notice that the Lemma in the above solu-
tion can be changed to impose vanishing of the ele-
mentary symmetric polynomials σi(a1, a2, . . . , a2n),
i = 1, 2, . . . , n, instead of Newton sums. Indeed, if
the σi all vanish, then so do the polynomials

σi(ā1, a2, . . . , ā2n) =
|a1|2iσ2n−i(a1, a2, . . . , a2n)

ā1ā2 . . . ā2n
,

so σi(a1, . . . , a2n) also vanishes for i = n+1, . . . , 2n−
1. Hence a1, a2, . . . , a2n are the roots of z2n − |a1|n,
as desired.
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