
Problem 4. Given a triangle ABC, letH and O be its orthocentre and circumcentre, respectively.
Let K be the midpoint of the line segment AH. Let further ℓ be a line through O, and let P
and Q be the orthogonal projections of B and C onto ℓ, respectively. Prove that KP +KQ ≥ BC.

Russia, Vasily Mokin

Solution 1. Fix the origin at O and the real axis
along ℓ. A lower case letter denotes the complex
coordinate of the corresponding point in the config-
uration. For convenience, let |a| = |b| = |c| = 1.

Clearly, k = a+ 1
2(b+ c), p = a+ 1

2

(
b+ 1

b

)
and

q = a+ 1
2

(
c+ 1

c

)
.

Then |k− p| =
∣∣a+ 1

2

(
c− 1

b

)∣∣ = 1
2 |2ab+ bc− 1|,

since |b| = 1.
Similarly, |k − q| = 1

2 |2ac + bc − 1|, so, since
|a| = 1,

|k − p|+ |k − q| = 1

2
|2ab+ bc− 1|+ 1

2
|2ac+ bc− 1|

≥ 1

2
|2a(b− c)| = |b− c|,

as required.

Solution 2. Let M be the midpoint of BC, and
let R be the projection of M onto ℓ. In other words,
R is the midpoint of PQ. Since ∠BPO = ∠BMO =
90◦, the points B, P , O, and M are concyclic, so
∠(OM,OB) = ∠(PM,PB) = ∠(PM,MR), so the
right trianglesMRP andOMB are similar and have
different orientation. Similarly, the triangles MRQ
and OMC are similar and have different orientation,
hence so are the triangles OBC and MPQ.
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Recall that
−−→
AH = 2

−−→
OM , so

−−→
OM =

−−→
AK. Hence

AOMK is a parallelogram, so MK = OA = OB =
OC.

Consider the rotation through ∠(
−−→
OC,

−−→
OB)

about M . It maps P to Q; let it map K to some
point L. Then MK = ML = OB = OC and
∠LMK = ∠BOC, so the triangles OBC and MKL
are congruent. Hence BC = KL ≤ KQ + LQ =
KQ+KP , as required.

Solution 3. Let α = ∠(PB,BC) = ∠(QC,BC).
Since P lies on the circle of diameter OB,
∠(OP,OM) = α. Since also Q lies on the cir-
cle of diameter OC, it immediately follows that

MP = MQ = R sinα by sine theorem in triangles
△OPM and △OQM .

Because PQ is the projection of BC on line ℓ,
it follows that PQ = BC sinα. Just like in the first
solution, KM = AO = R (the circumradius of tri-
angle △ABC).

Now apply Ptolemy’s inequality for the quadri-
lateral KPMQ: KP ·MQ+KQ ·MP ≥ PQ ·KM ,
and now substitute the relations from above, leading
to

R sinα(KP +KQ) ≥ R sinα ·BC,

which is precisely the conclusion whenever sinα ̸= 0.
The case when sinα = 0 can be treated either di-
rectly, or via a limit argument.

Solution 4. Denote by R and O the circumradius
and the circumcentre of triangle ABC, respectively.
As in Solution 1, we see that MK = R.

Assume now that ℓ is fixed, while A moves along
the fixed circle (ABC). Then K will move along
a cricle centred at M with radius R. We must
show that for each point K on this circle we have
BC ≤ KP + KQ. In doing so, we prove that the
afore-mentioned circle contains an ellipse with foci
at Q and P with distance BC.

Let S be the foot of the perpendicular from M
to PQ, it is easy to verify that S is the center of
the ellipse. We shall then consider it as the origin.
Let u = BC

2 and t = PQ
2 ; notice that u is the major

semi-axis of the ellipse and
√
u2 − t2 is the minor

one. Assume X(x, y) is a point on this ellipse. We
now need to prove MX ≤ R.

Since X is on the ellipse, we can write (x, y) =
(u cos θ,

√
u2 − t2 sin θ), for some θ ∈ (0, 2π). Since

MX2 = x2+(y+MS)2, we can expand and obtain

MX2 = u2+MS2−t2 ·sin2 θ+2MS ·
√
u2 − t2 ·sin θ.

Add and subtract MS2(u2 − t2)/t2 in order to
obtain a square on the right hand side: MX2 = u2+

MS2 + MS2(u2−t2)
t2

−
(
t sin θ − MS

√
u2−t2

t

)2
. It now

suffices to show that u2 +MS2 +
MS2(u2 − t2)

t2
=

R2, since then it would immediately follow that
MX2 ≤ R2.

Applying Pythagorean theorem in triangles
OBM and OSM , we obtain R2 = u2 + OM2 and
OM2 = MS2 + OS2, so it remains to prove that

OS2 = MS2(u2−t2)
t2

. Let α = ∠(OP,BM), then
OS/MS = tanα and t/u = cosα, so OS2 =

MS2 tan2 α = MS2
(
1−cos2 α
cos2 α

)
= MS2 · u2−t2

t2
, which

is the desired result.



Problem 5. Let P (x), Q(x), R(x) and S(x) be non-constant polynomials with real coefficients
such that P (Q(x)) = R(S(x)). Suppose that the degree of P (x) is divisible by the degree of R(x).

Prove that there is a polynomial T (x) with real coefficients such that P (x) = R(T (x)).

Iran, Navid Safaei

Solution 1. Degree comparison of P (Q(x)) and
R(S(x)) implies that q = degQ | degS = s. We
will show that S(x) = T (Q(x)) for some polynomial
T . Then P (Q(x)) = R(S(x)) = R(T (Q(x))), so the
polynomial P (t)− R(T (t)) vanishes upon substitu-
tion t = S(x); it therefore vanishes identically, as
desired.

Choose the polynomials T (x) and M(x) such
that

S(x) = T (Q(x)) +M(x), (∗)
where degM is minimised; if M = 0, then we get
the desired result. For the sake of contradiction,
suppose M ̸= 0. Then q ∤ m = degM ; other-
wise, M(x) = βQ(x)m/q +M1(x), where β is some
number and degM1 < degM , contradicting the
choice of M . In particular, 0 < m < s and hence
deg T (Q(x)) = s.

Substitute now (∗) into R(S(x)) − P (Q(x)) =
0; let α be the leading coefficient of R(x) and
let r = degR(x). Expand the brackets to
get a sum of powers of Q(x) and other terms
including powers of M(x) as well. Amongst
the latter, the unique term of highest degree
is αrM(x)T (Q(x))r−1. So, for some polyno-
mial N(x), N(Q(x)) = αrM(x)T (Q(x))r−1 +
a polynomial of lower degree.

This is impossible, since q divides the degree of
the left-hand member, but not that of the right-
hand member.

Solution 2. All polynomials in the solution have
real coefficients. As usual, the degree of a polyno-
mial f(x) is denoted deg f(x).

Of all pairs of polynomials P (x), R(x), satis-
fying the conditions in the statement, choose one,
say, P0(x), R0(x), so that P0(Q(x)) = R0(S(x))
has a minimal (positive) degree. We will show
that degR0(x) = 1, say, R0(x) = αx + β for some
real numbers α ̸= 0 and β, so P0(Q(x)) = αS(x)+β.
Hence S(x) = T (Q(x)) for some polynomial T (x).

Now, if P (x) and R(x) are polynomials sat-
isfying P (Q(x)) = R(S(x)), then P (Q(x)) =
R(T (Q(x))). Since Q(x) is not constant, it takes
infinitely many values, so P (x) and R(T (x)) agree
at infinitely many points, implying that P (x) =
R(T (x)), as required.

It is therefore sufficient to solve the problem
in the particular case where F (x) = P (Q(x)) =
R(S(x)) has a minimal degree. Let d =
gcd(degQ(x),degS(x)) to write degQ(x) = ad
and degS(x) = bd, where gcd(a, b) = 1. Then

degP (x) = bc, degR(x) = ac and degF (x) = abcd
for some positive integer c. We will show that mini-
mality of degF (x) forces c = 1, so degP (x) = b,
degR(x) = a and degF (x) = abd. The condi-
tions a = degR(x) | degP (x) = b and gcd(a, b) = 1
then force a = 1, as stated above.

Consequently, the only thing we are left with is
the proof of the fact that c = 1. For convenience, we
may and will assume that P (x), Q(x), R(x), S(x)
are all monic; hence so is F (x). The argument
hinges on the lemma below.

Lemma. If f(x) is a monic polynomial of degree
mn, then there exists a degree n monic polyno-
mial g(x) such that deg

(
f(x)− g(x)m

)
< (m− 1)n.

(If m = 0 or 1, or n = 0, the conclusion is still
consistent with the usual convention that the iden-
tically zero polynomial has degree −∞.)

Proof. Write f(x) =
∑mn

k=0 αkx
k, αmn = 1, and

seek g(x) =
∑n

k=0 βkx
k, βn = 1, so as to fit the

bill. To this end, notice that, for each positive inte-
ger k ≤ n, the coefficient of xmn−k in the expansion
of g(x)m is of the form mβn−k+φk(βn, . . . , βn−k+1),
where φk(βn, . . . , βn−k+1) is an algebraic expression
in βn, . . . , βn−k+1. Recall that βn = 1 to de-
termine the βn−k recursively by requiring βn−k =
1
m

(
amn−k − φk(βn, . . . , βn−k+1)

)
, k = 1, . . . , n.

The outcome is then the desired polyno-
mial g(x).

We are now in a position to prove that c =
1. Suppose, if possible, that c > 1. By the
lemma, there exist monic polynomials U(x) and
V (x) of degree b and a, respectively, such that
deg

(
P (x) − U(x)c

)
< (c − 1)b and deg

(
R(x) −

V (x)c
)
< (c − 1)a. Then deg

(
F (x) − U(Q(x))c

)
=

deg
(
P (Q(x))−U(Q(x))c

)
< (c−1)abd, deg

(
F (x)−

V (S(x))c
)
= deg

(
R(S(x))−V (S(x))c

)
< (c−1)abd,

so deg
(
U(Q(x))c − V (S(x))c

)
= deg

((
F (x) −

V (S(x))c
)
−
(
F (x)− U(Q(x))c

))
< (c− 1)abd.

On the other hand, U(Q(x))c − V (S(x))c =(
U(Q(x)) − V (S(x))

)(
U(Q(x))c−1 + · · · +

V (S(x))c−1
)
.

By the preceding, the degree of the left-hand
member is (strictly) less than (c − 1)abd which is
precisely the degree of the second factor in the right-
hand member. This forces U(Q(x)) = V (S(x)),
so U(Q(x)) = V (S(x)) has degree abd < abcd =
degF (x) — a contradiction. Consequently, c = 1.
This completes the argument and concludes the
proof.



Problem 6. Let r, g, b be non-negative integers. Let Γ be a connected graph on r + g + b + 1
vertices. The edges of Γ are each coloured red, green or blue. It turns out that Γ has

� a spanning tree in which exactly r of the edges are red,

� a spanning tree in which exactly g of the edges are green and

� a spanning tree in which exactly b of the edges are blue.

Prove that Γ has a spanning tree in which exactly r of the edges are red, exactly g of the edges
are green and exactly b of the edges are blue.

Russia, Vasily Mokin

Solution 1. Induct on n = r + g + b. The base
case, n = 1, is clear.

Let now n > 1. Let V denote the vertex set
of Γ, and let Tr, Tg, and Tb be the trees with ex-
actly r red edges, g green edges, and b blue edges,
respectively. Consider two cases.

Case 1: There exists a partition V = A ⊔ B of
the vertex set into two non-empty parts such that
the edges joining the parts all bear the same colour,
say, blue.

Since Γ is connected, it has a (necessarily blue)
edge connecting A and B. Let e be one such.

Assume that T , one of the three trees, does not
contain e. Then the graph T ∪ {e} has a cycle C
through e. The cycle C should contain another
edge e′ connecting A and B; the edge e′ is also
blue. Replace e′ by e in T to get another tree T ′

with the same number of edges of each colour as
in T , but containing e.

Performing such an operation to all three trees,
we arrive at the situation where the three trees T ′

r,
T ′
g, and T ′

b all contain e. Now shrink e by identi-
fying its endpoints to obtain a graph Γ∗, and set
r∗ = r, g∗ = g, and b∗ = b − 1. The new graph
satisfies the conditions in the statement for those
new values — indeed, under the shrinking, each of
the trees T ′

r, T
′
g, and T ′

b loses a blue edge. So Γ∗

has a spanning tree with exactly r red, exactly g

green, and exactly b − 1 blue edges. Finally, pass
back to Γ by restoring e, to obtain the a desired
spanning tree in Γ.

Case 2: There is no such a partition.

Consider all possible collections (R,G,B),
where R, G and B are acyclic sets consisting of r
red edges, g green edges, and b blue edges, respec-
tively. By the problem assumptions, there is at
least one such collection. Amongst all such collec-
tions, consider one such that the graph on V with
edge set R ∪ G ∪ B has the smallest number k of
components. If k = 1, then the collection provides
the edges of a desired tree (the number of edges is
one less than the number of vertices).

Assume now that k ≥ 2; then in the result-
ing graph some component K contains a cycle C.
Since R, G, and B are acyclic, C contains edges of
at least two colours, say, red and green. By assump-
tion, the edges joining V (K) to V ∖ V (K) bear at
least two colours; so one of these edges is either red
or green. Without loss of generality, consider a red
such edge e.

Let e′ be a red edge in C and set R′ = R∖{e′}∪
{e}. Then (R′, G,B) is a valid collection providing
a smaller number of components. This contradicts
minimality of the choice above and concludes the
proof.
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Solution 2. For a spanning tree T in Γ, denote by
r(T ), g(T ), and b(T ) the number of red, green, and
blue edges in T , respectively.

Assume that C is some collection of spanning
trees in Γ. Write

r(C) = min
T∈C

r(T ), g(C) = min
T∈C

g(T ),

b(C) = min
T∈C

b(T ), R(C) = max
T∈C

(T ),

G(C) = max
T∈C

g(T ), B(C) = max
T∈C

b(T ).

Say that a collection C is good if r ∈ [r(C, R(C)],
g ∈ [g(C, G(C)], and b ∈ [b(C, B(C)]. By the prob-
lem conditions, the collection of all spanning trees
in Γ is good.

For a good collection C, say that an edge e of Γ
is suspicious if e belongs to some tree in C but not
to all trees in C. Choose now a good collection C
minimizing the number of suspicious edges. If C
contains a desired tree, we are done. Otherwise,
without loss of generality, r(C) < r and G(C) > g.

We now distinguish two cases.

Case 1: B(C) = b.
Let T 0 be a tree in C with g(T 0) = g(C) ≤ g.

Since G(C) > g, there exists a green edge e con-
tained in some tree in C but not in T 0; clearly, e is
suspicious. Fix one such green edge e.

Now, for every T in C, define a spanning tree
T1 of Γ as follows. If T does not contain e, then
T1 = T ; in particular, (T 0)1 = T 0. Otherwise, the
graph T ∖ {e} falls into two components. The tree
T0 contains some edge e′ joining those components;
this edge is necessarily suspicious. Choose one such
edge and define T1 = T ∖ {e} ∪ {e′}.

Let C1 = {T1 : T ∈ C}. All edges suspicious for
C1 are also suspicious for C, but no tree in C1 con-

tains e. So the number of suspicious edges for C1 is
strictly smaller than that for C.

We now show that C1 is good, reaching thereby
a contradiction with the choice of C. For every T
in C, the tree T1 either coincides with T or is
obtained from it by removing a green edge and
adding an edge of some colour. This already shows
that g(C1) ≤ g(C) ≤ g, G(C1) ≥ G(C) − 1 ≥ g,
R(C1) ≥ R(C) ≥ r, r(C1) ≤ r(C) + 1 ≤ r, and
B(C1) ≥ B(C) ≥ b. Finally, we get b(T 0) ≤
B(C) = b; since C1 contains T 0, it follows that
b(C1) ≤ b(T 0) ≤ b, which concludes the proof.

Case 2: B(C) > b.

Consider a tree T 0 in C satisfying r(T 0) =
R(C) ≥ r. Since r(C) < r, the tree T 0 contains
a suspicious red edge. Fix one such edge e.

Now, for every T in C, define a spanning tree T2

of Γ as follows. If T contains e, then T2 = T ; in par-
ticular, (T 0)2 = T 0. Otherwise, the graph T ∪ {e}
contains a cycle C through e. This cycle contains
an edge e′ absent from T 0 (otherwise T 0 would con-
tain the cycle C), so e′ is suspicious. Choose one
such edge and define T2 = T ∖ {e′} ∪ {e}.

Let C2 = {T2 : T ∈ C}. All edges suspicious
for C2 are also suspicious for C, but all trees in C2
contain e. So the number of suspicious edges for C2
is strictly smaller than that for C.

We now show that C2 is good, reaching again a
contradiction. For every T in C, the tree T2 either
coincides with T or is obtained from it by remov-
ing some edge and adding a red edge. This shows
that r(C2) ≤ r(C) + 1 ≤ r, R(C2) ≥ R(C) ≥ r,
G(C2) ≥ G(C) − 1 ≥ g, g(C2) ≤ g(C) ≤ g,
b(C1) ≤ b(C) ≤ b and B(C2) ≥ B(C) − 1 ≥ b. This
concludes the proof.
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